如果有研究透明场景3D重建的研究者,可以通过邮箱zhangwenniu@163.com联系我,我目前创建了一个透明场景3D重建的研究者交流群,欢迎感兴趣的研究者加入。
文章信息
标题
Dense Reconstruction of Transparent Objects by Altering Incident Light Paths Through Refraction
作者
Xiaotong Chen1, Zheming Zhou2, Zhuo Deng2, Omid Ghasemalizadeh2, Min Sun2, Cheng-Hao Kuo2, Arnie Sen2
1 X. Chen is with the Department of Robotics, University of Michigan, Ann Arbor, MI, USA. cxt@umich.edu 2 Z. Zhou, Z. Deng, O. Ghasemalizadeh, M. Sun, and C.H. Kuo are with Amazon Lab126, Sunnyvale, CA, USA. {zhemiz, zhuod, ghasemal, minnsun, chkuo, senarnie}@amazon.com
发表信息
引用信息
@INPROCEEDINGS{10233838,
author={Wang, Ziyu and Yang, Wei and Cao, Junming and Hu, Qiang and Xu, Lan and Yu, Junqing and Yu, Jingyi},
booktitle={2023 IEEE International Conference on Computational Photography (ICCP)},
title={NeReF: Neural Refractive Field for Fluid Surface Reconstruction and Rendering},
year={2023},
volume={},
number={},
pages={1-11},
doi={10.1109/ICCP56744.2023.10233838}
}
论文链接
文章内容
介绍
21-231209. Tabletop Transparent Scene Reconstruction via Epipolar-Guided Optical Flow with Monocular Depth Completion Prior. 本文于2023年10月15号挂在Arxiv上的,据arxiv上的备注说,本文是投IEEE-RAS Humanoids 2023 paper的。文章的方法缩写为D-EOF,缩写来自Monocular Depth Prior-based Epipolar-Guided Optical Flow,基于ClearPose多透明物体数据集的透明物体点云重建任务,作者将工作分为两阶段。第一阶段使用单视角的深度补全网络与透明物体的分割网络,预测单一视角下的透明物深度。第二阶段利用对极线约束相邻视角下透明物体的边界位置一致性,相邻视角的位置变化是通过光流法确定的。文章汇报了在ClearPose的透明物体数据集下,对透明物体点云的重建效果。由于没有合适的比较方法,文章对比单个透明物体的重建方法Through Looking Glass、通用场景下的TSDF表面重建方法。文章汇报了训练分割网络RCNN的轮数是5轮,三维的轮廓标定点在捆集调整训练30轮,文中并没有说明具体时间,但是考虑到整个数据集较大,训练一轮的时间可能较长。
评论